На этой странице анализируются те данные, которые Дмитрий сделал общедоступными. Сейчас найдена такая информация о Дмитрии Пархоменко. Возможно, когда-нибудь он расскажет про себя немного больше.
16 лет 9 месяцев 19 дней назад
Ремонт мобильных телефонов!!!!!!!!!!
Автомобили, HI-FI stereo, обожаю iPhone 2G ( трижешный не впечатляет)
A p h r o d i t e, Flying Steps! Немного пропирает зарубежное RnB. Есть немного клуба
2Fast 2Furios, Стелс, Авария, И вся трилогия звездных воен (STAR WARS)
Научное пособие по квантовой физике
95 квартал, Comedy Club ( особенно Незлобин)
Геометрическая формулировка:
Изначально теорема была сформулирована следующим образом:
В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Алгебраическая формулировка:
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b:
a2 + b2 = c2
Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.
Обратная теорема Пифагора:
Для всякой тройки положительных чисел a, b и c, такой, что a2 + b2 = c2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.
Доказательства
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы [1]. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Данный факт даже нашёл отражение в художественной литературе: в повести «Приключения Электроника» Евгения Велтистова главный герой на школьном уроке математики приводит у доски 25 различных доказательств теоремы Пифагора, повергнув в изумление учителя и всех одноклассников.
Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).